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Motivation for Automatic Design

• Aerodynamic development typically “cut&try” 
– Slow (design time doing detailed design iterations)
– Expensive
– Relies on physical insight of designer for changes

• Automatic design to reduce time in detail   
design phase
– Improved performance
– Decreased costs



Aerodynamic Shape Optimization

• Large number of design variables 
necessary for complete aircraft

• Control theory - gradient requires only 
the solution of an adjoint system

• Gradient calculation independent of the 
number of design variables



Design Procedure

1. Solve the flow equations for r, u1, u2, u3, p
2. Solve the adjoint equations for y subject to 

appropriate boundary conditions
3. Evaluate the gradient G
4. Project G into an allowable subspace that satisfies 

any geometric constraints
5. Update the shape based on the direction of 

steepest descent
6. Return to step 1 until convergence is reached



Euler Flow Solver/Design Code 
SYN75

• 2D compressible inviscid fluid flow 
• Finite volume
• Explicit multistage scheme of Jameson
• Multigrid time stepping scheme of 

Jameson
• Adjoint formulation for design problem
• General triangular mesh
• Equivalent to Galerkin finite element 

method



Governing Equations

Euler equations for flow of a compressible

inviscid fluid in integral form:
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Governing Equations
Previous equations are 
solved for each CV in 
computational domain

k

Control Volume for node i

( ) ∑ =+
k

kiidt
d 0RV w

Flux contributions across 
interior faces cancel

( ) ∑ =⋅+
k

kkiidt
d 0V SFw



Artificial Dissipation

Central differencing of the convective flux term allows 
oscillation of the solution due to even-odd decoupling

A,B,C constant 
but distinct

Add dissipation terms to the Euler fluxes



Integration In Time
Multistage Scheme

Jameson’s Runge-Kutta method

for a m-stage scheme:
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Convergence Acceleration

• Time step constraint for explicit 
schemes is too restrictive

• Convergence can be enhanced by
– Local time stepping
– Multigrid



Multigrid

• Coarse meshes are used to estimate the 
correction to the residual calculated on the 
fine mesh

• For minimal extra computational cost and 
memory, convergence rates are increased by 
an order of magnitude

• First utilized for Euler equations on an      
unstructured grid by A. Jameson



Multigrid: Fine Grid

Trailing edge detailFine mesh 160x32 points      
(view of partial mesh)



80x16

Multigrid: Coarse Grids

40x8

20x4 10x2



SYN75 Results

RAE drag minimization

Initial solution

CD=0.0062



SYN75 Results

RAE drag minimization

15 design cycles

CD=0.0029



Complete Configuration 
Unstructured Mesh



Computational Requirements

• 2D - few design variables
– Single processor

• 3D - large number of design variables
– Serial computational time excessive
– Parallel

• Distribute work spatially: Domain Decomposition



Conclusion

• Adjoint formulation on unstructured 
mesh implemented

• Two-Dimensional unstructured mesh 
design tested



Work Plan
• Continue to develop 2D code
• Extend to 3D

– Flow & adjoint solvers are in place 
(Jameson & Martinelli)

– Write gradient formulation

• Shape modification
– More general than point movement
– Integration with CAD

• Pass Generals
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